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Abstract: The predicted corrosion losses is one of the most important factors in the proper design 1

of a steel structure’s service life. Corrosion coupon analysis will give a prediction of both short- 2

and long-term corrosion loss. In the event of short-term exposure, the most useful data are often 3

those that are available on an annual basis. Corrosion coupons must be exposed for an extended 4

period (such as 10 years or more), which is not always practical prior to the construction of the 5

building itself, particulary for long-term prediction of corrosion losses is needed. In steel buildings, 6

designers frequently depend on corrosion maps and corrosion loss prediction models. While ISO 7

9223 and ISO 9224 serve as widely used analytical prediction models, alternative methods are also 8

applicable. An additional option is to utilize an analytical model based on the UN/ECE ICP project 9

or the Multi-Assess project. Temperature, average relative humidity, average annual deposition of 10

chloride ions and sulfur dioxide, as well as the average annual concentration of dust particles, are just 11

a few examples of the input parameters for these models. These equations only consider the annual 12

average value; they do not consider inputs as random variables. The option of utilizing the input 13

values as the probability distribution of a random variable is discussed in this article. The authors 14

attempt to capture the variation of in-situ measurement values using the mentioned methods. These 15

numbers may not always accurately represent the predictions made by the models. The thickness 16

of the corrosion products after one year of exposure is then determined by processing the input 17

parameters using stochastic methods. The comparison with in-situ measurement data at sites located 18

near roadways is also included in the article. 19

Keywords: Corrosion loss; prediction; probability; DOProC; ISO 9223; UN ECE ICP; Multi-Asssess 20

1. Introduction 21

Civil engineering is specific due to the need for structures to be reliable and durable 22

over an extended period. According to EN 1990 [1], there is a requirement for 50 years 23

of service life for buildings and other common structures, and 100 years for monumental 24

building structures or bridges. Consequently, it is necessary to take care of the building 25

structure during its service life. A poor design can lead to significantly higher costs for 26

maintenance and repairs. There are a lot of structures exposed to environmental influence, 27

which include corrosion stimulants. However, corrosion stimulants are a dynamically 28

changing variables. In the last century, the primary cause of atmospheric corrosion was 29

sulfur dioxide in inland environment. Due to ecological pressure, sulfur dioxide now has 30
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a minor effect on corrosion rate [2]. In the context of increasing road traffic, there are local 31

microclimates in the vicinity of roads. The main influence on corrosion rate occurs in the 32

winter when deicing salt is used. Sodium chloride and brine are the main deicing agents 33

used to maintain road passability. Passing vehicles splash deiced snow and emit aerosol and 34

impurities. Chlorides have a significant influence on the service life of structures [3], [4], [5]. 35

Corrosion processes on steel structures are accelerated by chlorides [6], [7], especially 36

in the vicinity of roads. These actions can influence both the serviceability limit state and 37

the ultimate limit state by reducing the cross-sectional area [8], [9]. Another significant 38

factor is the potential development of fatigue damage [10]. It is necessary to consider all 39

these phenomena in the design of steel structures, particularly in the case of weathering 40

steel constructions [11], [12]. After considering these factors, it becomes possible to design 41

the structure safely for its entire lifecycle. 42

Two main approaches are used for predicting corrosion loss and determining corro- 43

sion rates in the Czech Republic. The first approach is the corrosion map of the Czech 44

Republic [13]. These maps allow for a simplistic determination of corrosion loss. However, 45

it’s essential to note that these corrosion maps are based on prediction models referenced 46

in the following text. This approach is quite general and does not take into account local 47

environmental influences, which are often crucial for accurately determining the corrosion 48

aggressiveness of the local environment. Historically at the European region SO2 has a 49

significant influence to corrosion, but since 2000-2010 is minor influence due to ecological 50

pressure, especially desulphurisation units in the industry [14] [3]. One of most significant 51

influence is the deposition of chloride ions in the vicinity of roads, which depends on 52

factors such as traffic density, the topography of the terrain near the road, and the structural 53

and dispositional design of bridge structures. Corrosion maps are used when other data are 54

absent to determine corrosion loss. In a local microclimate, such as the road surroundings, 55

it is not advisable to use only corrosion maps. However, corrosion maps do not consider 56

the influence of local microclimates. 57

Alternatively, there is another possibility for determining corrosion loss. If detailed 58

information on environmental influences is available, an approach based on adjusting 59

corrosion stimulants (e.g. chloride and sulphur dioxide), temperature, relative humidity 60

and other input parameters can be used. Predicted corrosion loss (or corrosion class) can be 61

used to determine corrosion allowances for weathering steel constructions. For structures 62

designed from carbon steel, corrosion loss or corrosion class determines the suitable coating 63

system. Therefore, it is crucial to study corrosivity in specific microclimates, like those near 64

roads, and develop prediction models for accurate corrosion loss prediction. 65

Currently, numerous approaches exist for predicting corrosion loss and determining 66

corrosion class. The aim of this article is to apply three prediction models: 67

• ISO 9223 68

• UN ECE ICP Effect on Materials 69

• Multi-Asses 70

The first approach considered is based on the ISO 9223 standard [15], which include 71

the corrosion-damage equation. This equation predicts corrosion loss after one year of 72

exposure, considering factors such as the annual deposition of chloride ions and sulfur 73

dioxide, annual relative humidity, and temperature. 74

The second equation considered is from the UN ECE ICP Effect on Materials project [16], 75

which takes into account the influence of sulfur dioxide, annual relative humidity, annual 76

temperature, and time. 77

The third equation was developed within the Multi-Assess project [17], and consider 78

account various environmental variables, including the influence of sulfur dioxide, pH of 79

rain, and annual rainfall. A comprehensive list of variables is provided in Chapter 2. 80

It’s important to note that the ISO 9223 approach [15] is the only one that directly 81

considers the influence of chloride ions. The other two corrosion-damage equations do 82

not account for this influence directly. However, a derived relationship exists between the 83

amount of PM10 particles and the quantity of deposited chlorides, though it is not entirely 84



Version February 25, 2024 submitted to Coatings 3 of 23

accurate. It’s worth mentioning that this does not involve the direct deposition of chloride 85

ions, as might occur in cases of winter road maintenance. 86

The mentioned input parameters are not constant but rather random variables. Mod- 87

ern probabilistic methods exist, allowing engineers to work with input and output datasets 88

as random variables [18], [19]. Input parameters can be analyzed through long-term mea- 89

surements, allowing for the determination of their development in time and the expression 90

of the distribution function. Simulation methods like DOProC, Monte-Carlo, or SBRA 91

typically use histograms, instead of parametric distributions, for greater generality and 92

robustness. This approach is also suitable for technical professionals who do not specialize 93

in probabilistic assessments but use them as a tool for realized analyses. The quality of the 94

relationship between raw data and the resulting histogram can be described, for example, 95

by distribution fitness called closeness, which ranges from 0 to 1 [20]. In general, a higher 96

closeness value indicates that the resulting histogram better represents the raw data. 97

There are various approaches for working with values in the form of random variables. 98

Historically, methods like the Monte Carlo approach [21] or the follow-up approach in 99

the SBRA probabilistic method have been utilized [22]. These approaches are still widely 100

utilized. However, for large-scale tasks, they have the drawback of requiring a large 101

number of simulations, resulting in extended computation times. This challenge can be 102

addressed in a lot of cases with the Direct Optimized Probabilistic Calculation (DOProC) 103

method [23]. Numerous optimization tools have been developed for the DOProC method, 104

which can significantly accelerate computation speed without significantly compromising 105

the quality of the outputs. Significantly, these tools open up the user environment to 106

ordinary engineers who may not have deep expertise in probabilistic methods. 107

Well-described and processed input data are essential for accurate prediction. This 108

article utilizes available environmental data pertinent to the Czech Republic, spanning the 109

longest feasible observation period, to capture long-term trends. 110

Monika Mart’áková - Kubzová et al. made original study for the locality Kopisty [24]. 111

In the mentioned study, only normal and lognormal distributions are used without any 112

distribution fitting analysis. In current research the improvement is in distribution fitting 113

of applied parameters. Moreover , the comparation of predicted values with data from 114

the vicinity of the road for horizontal and vertical surfaces for the year 2022 and statistical 115

analysis of likelihood of prediction accuracy of studied models is conducted. Moreover, 116

extrapolated prediction interval for each environmental input variables up to the year 2030 117

is provided in this article, in order to follow the predicted evolution of each input variable. 118

The discussion focuses on this prediction. 119

2. Approaches to determine corrosion loss 120

The aim of this article is the utilization of three approaches for the determination 121

of corrosion loss in steel constructions. In the following text, the consideration is given 122

to one-year exposure of corrosion coupons or the application of equations designed for 123

one-year exposure. Corrosion after one year is input for validating each of prediction 124

approaches. At the same time, this is one of the basic findings that can be used to determine 125

long-term corrosion rate (e.g. according to ISO 9224 [25]). Based on this knowledge it is 126

possible to determine the corrosion allowance for new structures or to predict the corrosion 127

damage of existing structures. 128

2.1. ISO 9223 129

First prediction model is from ISO 9223 standard [15]. The outcome of the prediction 130

equation represents the corrosion loss for carbon steel after one year of exposure. The ISO 131

9223 model can be applied to weathering steel, as the impact of a protective layer is not 132

substantial during the first year of exposure [26]. The ISO 9224 standard also mentions an 133

equation for long-term corrosion loss [25]. However, this concept of long-term corrosion 134

loss is not suitable for this article. Article only includes data from a one-year exposure 135
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of corrosion coupons. The protective effect of the patina only becomes apparent with 136

prolonged exposure of the surface to a corrosive environment [27]. 137

rcorr = 1, 77 × P0,52
d × e0,02×RH+ fst + 0, 102 × S0,62

d × e0,033×RH+0,04×T (1)

where if T≤ 10◦C: 138

fst = 0, 150 × (T − 10), (2)

else: 139

fst = −0, 054 × (T − 10), (3)

rcorr - average annual corrosion loss (µm/year)
Pd - average annual deposition rate of sulfur dioxide (mg/(m2×day)) 140

Sd - average annual deposition rate of chlorides (mg/(m2×day)) 141

RH - average annual relative humidity (%) 142

T - average annual temperature (◦C) 143

e - Euler’s number. 144

CHMI reports, except other environmental values, only the concentration of sulfur 145

dioxide (SO2), not the deposition rate. It is necessary to incorporate the deposition rate of 146

sulfur dioxide into the equation. In this case, it is possible to use the equation from ISO 147

9223 standard [15] for converting between the concentration and deposition rate of sulfur 148

dioxide. 149

Pd = 0, 8 × Pc (4)

where 150

Pd - average annual deposition rate of sulfur dioxide (mg/(m2×day)) 151

Pc - average annual concentration of sulfur dioxide (mg/m3).

2.2. UN ECE ICP Effect on Materials 152

From the project called UN ECE ICP Effect on Materials [16], [28] was derived equation 153

for dataset from 1987 and 1995. This project continue to these days. This study of corrosion 154

attack includes an equation for determining corrosion loss on weathering steels: 155

ln(rcorr) = 3, 54 + 0, 33 × ln(t) + 0, 13 × ln(Pc) + 0, 02 × RH × fst (5)

from which it can be expressed: 156

rcorr = P0,13
c × t0,33 × e0,02×RH× fst+3,54 (6)

where if T≤ 10◦C: 157

fst = 0, 059 × (T − 10), (7)

else: 158

fst = −0, 036 × (T − 10), (8)

rcorr - average annual corrosion loss (µm/year)
Pc - average annual concentration of sulfur dioxide (mg/m3)
RH - average annual relative humidity (%) 159

T - average annual temperature (◦C) 160

t - exposition time (years) 161

e - Euler’s number. 162
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2.3. Multi-Assess 163

The Multi-Assess project investigated corrosion damage to materials at 50 sites across 164

Europe between 1970 and 2005 [17]. This research project spanned the years when the 165

concentration of SO2 was gradually decreasing due to environmental pressures, primarily 166

on industrial production. It’s worth noting that the reduction in sulfur dioxide (SO2) 167

concentration also affects the magnitude of corrosion loss on exposed surfaces [3]. 168

The equation (9) contains more environmental variables than the previous two men- 169

tioned, but does not directly include the effect of chloride ion deposition. The influence is 170

included in the average annual concentration of PM10 , which contain approximately 7 % of 171

chlorides for Czech republic [29]. The final equation is: 172

rcorr = 29, 1 + (21, 7 + 1, 39 × P0,6
c × RH60 × e fst + 1, 29 × RAIN × [H+] + 0.593 × PM10)× t0,6, (9)

where 173

[H+] =
10−pH

V
× M × 1000 (10)

and where if T≤ 10◦C: 174

fst = 0, 150 × (T − 10), (11)

else: 175

fst = −0, 054 × (T − 10), (12)

rcorr - average annual corrosion loss (µm/year)
Pc - average annual concentration of sulfur dioxide (mg/m3)
RH60 - average annual relative humidity (%) 176

if RH < 60 %, then RH60=0, else RH60 = RH 177

RH - average annual relative humidity (%) 178

T - average annual temperature (◦C) 179

RAIN - annual rainfall (mm) 180

[H+] - molar concentration of hydrogen in rainfall (mg/l) 181

pH - potential of hydrogen (-) 182

V - volume of rainfall (l) 183

M - water molar mass (g/mol) 184

PM10 - average annual concentration of particles smaller than 10 µm (mg/m3)
t - exposition time (years) 185

e - Euler’s number. 186

3. Inputs 187

Due to the challenge of directly measuring all input variables at all of the exposure 188

site, the nearest relevant CHMI station, which measure investigated environment variable, 189

is selected. The data from the CHMI databases [30], [31] originate from the listed stations, 190

the distance and position are depicted in the Figure 1: 191

• Opava, Kateřinky 192

• Opava, Otice 193

• Ostrava-Poruba/CHMI 194

The predicted data is extrapolated to the year 2030 for climate data. The resulting 195

distributions are determined using the HistAn software [32]. Prediction is made for the 196

year 2022 and comparsion with in-situ measured data is mentioned in Chapter 5. 197
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Figure 1. Overview map of the test site and distance to the CHMI stations (source: mapy.cz)

3.1. Average annual temperature 198

The average annual temperature data for the Opava, Otice site from 1961 to 2022 was 199

investigated [30], [31]. The Laplace distribution of average annual temperature is selected. 200

64 intervals of Laplace distribution is used. Closeness of the selected Laplace distribution is 201

0.43, Normal distribution has closeness 0.20. Therefore, Laplace distribution was selected. 202

Temperature has a significant influence on the corrosion rate. When the temperature is 203

above 0°C [33], the atmospheric corrosion started. However, when the temperature drops 204

below 0°C, the influence on the corrosion rate decreases because water can change its state 205

from liquid to solid - freezing. This temperature can be changed by using chlorides (NaCl 206

or brine) as a deicing salt to maintain roads. On the other hand, at high temperatures and 207

when the relative humidity is not close to 100 %, evaporation occurs, and water loses its 208

influence on the corrosion rate because surfaces dry out [34]. These factors are pertinent for 209

atmospheric corrosion. 210

The Czech republic is in the mild climate zone and average annual temperature is 211

between 6°C to 11°C. Average number of freezing days is historicaly about 40 days [35], [36]. 212

The linear regresion analysis with prediction and confidence interval is in the Figure 2. 213

Prediction for the year 2022 is marked by the dotted line and the distribution is in the 214

Figure 3. Input parameters of the distribution are in the Table 1. 215

Figure 2. Confidence and prediction interval - average annual temperature - Laplace distribution
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Figure 3. Prediction of average annual temperature for the year 2022 - Laplace distribution

Table 1. Laplace distribution - average annual temperature (◦C)

Intervals (-) µ(°C) β(°C)
Temperature 64 9,373 0,70325

3.2. Average annual relative humidity 216

The average annual relative humidity data for the Opava, Otice site from 1961 to 2022 217

was investigated [30], [31]. The Laplace distribution of average annual relative humidity 218

is selected. 64 intervals of Laplace distribution is used. Closeness of the selected Laplace 219

distribution is 0.44, Normal distribution has closeness 0.37. Therefore, Laplace distribution 220

was selected. 221

The average annual relative humidity is associated with the time of wetness on the 222

surface. If there is higher value of relative humidity, it is more likely that precipitation 223

happen. Water is one of important factors for progress of corrosion reaction [37]. For 224

example, in Multi-Assess approach if the average annual relative humidity is smaller than 225

60 % then influence of relative humidity is neglected [17]. 226

The linear regresion analysis with prediction and confidence interval for RH is in the 227

Figure 4. Prediction for the year 2022 is marked by the dotted line and the distribution is in 228

the Figure 5. Input parameters of the distribution are in the Table 2. 229

Figure 4. Confidence and prediction interval - average annual relative humidity - Laplace distribution
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Figure 5. Prediction of average annual relative humidity for the year 2022 - Laplace distribution

Table 2. Laplace distribution - average annual relative humidity (%)

Intervals (-) µ(%) β(%)
RH 64 73,957 3,39156

3.3. Annual rainfall 230

The annual rainfall data for the Opava, Otice site from 1961 to 2022 was investi- 231

gated [30], [31]. The Laplace distribution of annual rainfall is selected. 64 intervals of 232

Laplace distribution is used. Closeness of the selected Laplace distribution is 0.79, Normal 233

distribution has closeness 0.60. Therefore, Laplace distribution was selected. 234

Annual rainfall is very important for non-covered structures, as for example railway 235

truss bridges. For other covered construction parts, as steel-concrete coupled road bridges, 236

it is not so important as direct influence. If there is covered steel, without direct exposure, 237

there is still some influence by evaporation from the ground and this can localy increase 238

relative humidity and possibility to water precipitating on the surface [38]. Another next 239

important factor of annual rainfall is the frequency and intensity of rainfall [39]. 240

The linear regresion analysis with prediction and confidence interval is in the Figure 6. 241

Prediction for the year 2022 is marked by the dotted line and the distribution is in the 242

Figure 7. Input parameters of the distribution are in the Table 3. 243

Figure 6. Confidence and prediction interval - annual rainfall - Laplace distribution
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Figure 7. Prediction of annual rainfall for the year 2022 - Laplace distribution

Table 3. Laplace distribution - annual rainfall (mm)

Intervals (-) µ(mm) β(mm)
Rainfall 64 543,997 86,75218

3.4. Average annual concentration of SO2 244

The average annual concetration of SO2 data for the Ostrava-Poruba/CHMI site from 245

1961 to 2022 was investigated [30], [31]. The Rayleigh distribution of average annual 246

concentration of SO2 is selected. 64 intervals of Rayleigh distribution is used. Closeness of 247

selected Rayleigh distribution is 0.80, Normal distribution is not mentioned in results from 248

HistAn software. Therefore, Rayleigh distribution was selected. 249

There was a significant influence of SO2 on corrosion rate in the 20th century in the 250

Czech republic, especially in 1970s and 1980s [40], [41]. Because of the poor air quality, 251

there was pressure to improve the air quality and the main air polluters (coal power 252

stations, heavy industry etc.) were forced to implement desulphurisation units. The 253

concentration of sulphur dioxide was decreased and approximately from year 2000 is 254

slightly decreasing [3], [24], [42]. For this article was used data from 2011, because in 255

this year was started measuring concentration of sulphur dioxide by station Ostrava- 256

Poruba/CHMI [30]. 257

In the case of SO2 only values after a significant decrease due to the installation of 258

desulphurisation units in heavy industry since 2000 are considered. This information is 259

only valid for newly constructed structures. However, in the case of older structures, it is 260

very important to take into account the entire time history of the SO2 concentration and to 261

consider the effect of the increased sulphur dioxide concentration on the structure. 262

The linear regresion analysis with prediction and confidence interval is in the Figure 8. 263

Prediction for the year 2022 is marked by the dotted line and the distribution is in the 264

Figure 9. Input parameter of the distribution is in the Table 4. 265
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Figure 8. Confidence and prediction interval - average annual concentration of SO2 - Rayleigh
distribution

Figure 9. Prediction of average annual concentration of SO2 for the year 2022 - Rayleigh distribution

Table 4. Rayleigh distribution - average annual concentration of SO2 (mg/m3)

Intervals (-) σ(mg/m3)
SO2 64 4,551

3.5. Average annual concentration of PM10 266

The average annual concetration of PM10 data for the Opava, Kateřinky site from 267

1961 to 2022 was investigated [30], [31]. The Rayleigh distribution of average annual 268

concentration of PM10 is selected. 64 intervals of Rayleigh distribution is used. Closeness 269

of selected Rayleigh distribution is 0.89, Normal distribution is not mentioned in results 270

from HistAn software. Therefore, Rayleigh distribution was selected. 271

There is a relationship between PM10 and chloride ions [43] [44]. This relationship 272

varies across different environmental situations. In the Czech Republic, studies conducted 273

to create corrosion maps have found that PM10 particles contain approximately 7 % chloride 274

ions [29]. This information is crucial because in the Multi-Assess [17] approach, the direct 275

influence of chloride ions is not considered as part of the prediction model. Instead, it 276

indirectly affects the equation through the presence of PM10 particles. 277

The linear regresion analysis with prediction and confidence interval is in the Figure 10. 278

Prediction for the year 2022 is marked by the dotted line and the distribution is in the 279

Figure 11. Input parameter of the distribution is in the Table 5. 280
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Figure 10. Confidence and prediction interval - average annual concentration of PM10 - Rayleigh
distribution

Figure 11. Prediction of average annual concentration of PM10 for the year 2022 - Rayleigh distribu-
tion

Table 5. Rayleigh distribution - average annual concentration of PM10 (mg/m3)

Intervals (-) σ (mg/m3)
PM10 64 19,960

3.6. Average annual deposition of Cl− 281

A constant deposition rate of chloride ions for 2022 was determined through linear 282

regression analysis based on the authors’ in-situ measurements from 2019 to 2022 [2], [40], 283

[45], [46] in the Hrabyně, Josefovice locality. It is a long term measurement of deposition of 284

chloride ions. Chloride deposition analysis is carried out for each month of the year. The 285

values given are a weighted average for each year. There are five measurement sites, but 286

corrosion coupons are placed only on three of them (B1, B3 and B5). For this reason only 287

data from wet candle measurement for mentioned sites are used. Test sites are depicted in 288

the Figure 12. 289
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Figure 12. Overview map of the test sites in the Hrabyně, Josefovice locality (source: mapy.cz)

The linear regresion analysis with prediction and confidence interval is in the Fig- 290

ures 13, 14 and 15. Prediction for the year 2022 is marked in each Figure. There is still a lack 291

of long-term measurements to define the input of chloride ion deposition rates as a specific 292

type of distribution. For the prediction of corrosion losses are used predicted values of 293

deposition of chloride ions, due to consideration of the chloride ion deposition trend. The 294

prediction and confidence interval is determined assuming a normal distribution. 295

Figure 13. Confidence and prediction interval - B1 site

Figure 14. Confidence and prediction interval - B3 site
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Figure 15. Confidence and prediction interval - B5 site

Table 6. Predicted deposition rate of chloride ions (mg/(m2∗day))

Test site Value (mg/(m2∗day))
B1 13.05
B3 6.55
B5 3.80

3.7. Rainfall pH 296

The rainfall pH distribution is in the Figure 16 and its parameters in the Table 7. 297

Parameters are used from available literature [47], [48], [45]. 298

Figure 16. Confidence and prediction interval - Rainfall pH - Normal distribution

Table 7. Normal distribution - rainfall pH (-)

Intervals (-) µ (-) σ (-)
pH 64 5,82 0,63

4. Application of Direct Optimized Probabilistic Calculation (DOProC) 299

Since input data is represented as functions of random variables, probabilistic methods 300

are necessary to express the results. In this case, the Monte Carlo method or its application 301

in the SBRA method [22] can be used. However, due to the complexity of the problems 302

to be solved, especially in the Multi-Assess method, this approach can be computation- 303

ally demanding, particularly for very low probability events. To address this, the Direct 304

Optimized Probabilistic Calculation (DOProC) [49] and ProbCalc software [50] are used. 305
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Due to the presence of conditional functions in all the approaches mentioned in this 306

paper, stochastic analysis requires the use of Delphi 7 scripts [51]. Scripts are compiled 307

into .dll libraries and utilized within the Probcalc software [50]. An additional benefit of 308

using .dll libraries is the acceleration of the calculations. The full text of the scripts is in 309

Appendix A. 310

In the case of the ISO 9223 and UN ECE ICP Effect on Materials approaches, optimiza- 311

tion is not necessary because the computing time takes only a few seconds. However, the 312

situation is different for the Multi-Assess approach, where the computing time is significant 313

due to a large number of combinations. The number of combinations is much larger than 314

in the ISO 9223 or UN ECE ICP Effect on Materials approaches. In this case, it is advisable 315

to utilize zonal and interval optimization of input parameters [20], [49]. 316

The result of these optimizations is a reduction in the intervals of individual his- 317

tograms, thereby reducing the number of combinations and the complexity of the task. 318

However, these optimizations did not have a significant impact given the number of vari- 319

ables used. The estimated computation time before and after optimization was on the order 320

of days. 321

A substantial reduction in computation time was achieved through a technique called 322

grouping [20], where a portion of the original combinations is isolated and computed 323

separately. The results from these groups are then used for the subsequent calculations 324

while maintaining sufficient accuracy. In the case of the Multi-Assess-based approach, two 325

groups were used, represented by equations 13 and 14. Subsequently, the entire problem 326

was computed using the results from these groups by solving equation 15. This reduced 327

the computation time to mere seconds. 328

group1 = 1, 39 ∗ P0,6
c ∗ RH60 ∗ e fst (13)

group2 = 1, 29 ∗ RAIN ∗ [H+] + 0.593 ∗ PM10, (14)

rcorr = 29, 1 + (21, 7 + group1 + group2) ∗ t0,6, (15)

The resulting values of all three analysed models are shown in the Table 8 and distribu- 329

tion of the predicted values for each approach from the Figure 17 to the Figure 21. There are 330

mentioned 5% quantile, 95% quantile, mode and median for the relevant approach in each 331

picture. There is predicted values with 64 intervals for each approach. For the subsequent 332

analysis, the value of the 95% quantile is important because this value expresses the 95% 333

probability that the predicted value is smaller than the magnitude of the value and only 334

5 % of the values will be teoretically greater. 335

Table 8. Predicted corrosion loss value for 2022 by DOProC method and by mean value (µm/year)

ISO 9223 (µm/year) UN ECE
ICP

(µm/year)

Multi
Assess

(µm/year)B1 B3 B5

min 7.39 5.37 4.30 8.50 8.40
max 53.87 49.37 47.15 26.37 94.14

median 25.68 22.68 21.16 18.48 42.43
mode 24,91 22.68 21.16 18.89 41.07

5% quantile 16.69 13.93 12.48 15.06 23.81
95% quantile 36.22 32.93 31.30 22.03 63.86

prediction by mean value 22.22 19.31 17.74 17.51 37.57

From the Figure 17 to the Figure 21 are also marked in-situ measurement values. See 336

Chapter 5 for a more detailed description of the markings. 337
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Figure 17. Distribution of the predicted corrosion loss values for the ISO 9223 approach and the B1
site for the year 2022 (µm/year)

Figure 18. Distribution of the predicted corrosion loss values for the ISO 9223 approach and the B3
site for the year 2022 (µm/year)

Figure 19. Distribution of the predicted corrosion loss values for the ISO 9223 approach and the B5
site for the year 2022 (µm/year)
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Figure 20. Distribution of the predicted corrosion loss values for the UN ECE ICP Effect on Materials
approach for the year 2022 (µm/year)

Figure 21. Distribution of the predicted corrosion loss values for the Multi-Assess approach for the
year 2022 (µm/year)

5. Results of in-situ corrosion loss - site Hrabyně, Josefovice 338

The site Hrabyně, Josefovice and year 2022 were selected for the analysis of the 339

suitability of the chosen approaches for corrosion loss prediction. The positions of each test 340

sites are depicted in Figure 12. Values of chloride ion deposition and corrosion loss on both 341

horizontal and vertical corrosion coupons have been monitored over an extended period 342

near the I/11 road in the vicinity of Hrabyně, Josefovice. The orientation of the corrosion 343

coupons (H - horizontal, V - vertical) corresponds to the orientation of the major groups of 344

exposed real steel construction parts of bridges. The results of in-situ measurements and 345

statistical comparisons with output data from DOProC are presented in Table 9. Values 346

in the column ISO 9223, UN ECE ICP and Multi-Assess are fractiles from each approach. 347

There are also shown each in-situ measurement in relevant Figures from 17 to 21. 348
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Table 9. Measured corrosion loss values after one year exposure on exposed corrosion coupons - site
Hrabyně, Josefovice - year 2022

Loc./
Or.

rcorr ISO 9223
UN
ECE
ICP

Multi
Assess

(g/(m2 ∗ year)) (µm/year) (fractile) (fractile) (fractile)
B1 H 141,47 18.0 0.0823 0,385 0.0113

V 144,33 18.4 0.0941 0.460 0.0127
B3 H 112,45 14.3 0.0579 0.0242 0.00255

V 77,65 9.9 0.00516 0.0000584 0.0000728
B5 H 121,15 15.4 0.140 0.0672 0.00435

V 91,32 11.6 0.0336 0.00119 0.000602

Note: Values in the columns ISO 9223, UN ECE ICP and Multi-Assess are fractiles 349

related to measured corrosion loss from respective predicted statistical distribution. 350

6. Discussion 351

6.1. Probabilistic calculation 352

For predictive models with only a few input variables and distribution featuring a 353

limited number of intervals, the advantages of the DOProC method are not significantly 354

apparent. Models like the one from the ISO 9223 standard [15] and the approach from the 355

UN ECE ICP Effect on Materials [16], which fall into this category, can be solved in a matter 356

of seconds using today’s mainstream computing power. Further optimization steps are 357

unnecessary for computational efficiency. 358

However, a different situation arises in predictive models with numerous variables 359

or distribution featuring many intervals. In this article, it is examine the Multi-Assess 360

approach [17], which involves seven variables. One of these variables is time, which re- 361

mains constant at one year. The remaining six variables have 64 intervals each, resulting in 362

significantly longer computational times, estimated to be on the order of days. Zone and 363

interval optimization can certainly reduce the computational complexity of the problem, 364

bringing the estimated computation time down to aproximately one day. To achieve a 365

substantial acceleration in the calculation, the use of grouping is advisable, as it can signifi- 366

cantly reduce computational complexity. After employing both grouping and optimization, 367

the computation time for the Multi-Assess approach [17] becomes comparable to that of 368

the ISO 9223 [15] or UN ECE ICP Effect on Materials [16] approaches. 369

Additionally, to reduce computational time, the usage of a .dll script is implemented, 370

which is more efficient for the processor compared to running ProbCalc without the .dll 371

script. 372

6.2. Comparison of prediction models with in-situ measurements 373

From the Table 8 and equation (5), (6) and (9), it is evident that only the equation from 374

the ISO 9223 standard [15] takes directly into account the influence of annual deposition 375

of chloride ions. The other two equations do not consider this influence, preventing the 376

consideration of the trend of decreasing chloride ion deposition with increasing distance 377

from the road [40]. Additionally, the Multi-Assess approach incorporates the influence of 378

PM10 particles, which contain about 7 % chloride ions in the Czech Republic area [29]. 379

Notably, the ISO 9223 approach [15] shows the smallest minimum values, while the 380

equation from UN ECE ICP Effect on Materials [16] exhibits the highest values across all 381

basic characteristic limits. The variance of the maximum and minimum values in the UN 382

ECE ICP Effect on Materials [16] is smaller than for the other two approaches. This means 383

that the UN ECE ICP Effect on Materials [16], if used as a probabilistic prediction approach, 384

can quickly become non-safe for the prediction of corrosion loss after one year exposure 385

and is directly related to the corrosion class. If the predicted value of the 95% quantile is 386

smaller than real corrosion loss value, it is dangerous situation. It is necessary to say, it is 387

not in this case, but the authors feel it is important to point this out. 388
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The established quantiles demonstrate that the in-situ measurements from 2022 fall 389

safely below the 95% quantile values established by all considered approaches. On site B1, 390

the measured value is closest to the predicted 95% quantile value from the UN ECE ICP 391

Effect on Materials [16]. However, a different situation arises at sites B3 and B5, where the 392

fractile values are relatively low. It is because this approach does not consider the effect of 393

chlorides directly or indirectly. Predicted values are constant for all mentioned sites without 394

difference of distance from the road, as same as in the Multi-Assess approach. In the case 395

of predictions from Multi-Assess [17], all quantile values are notably small, with none 396

exceeding 5%. This mean that approach is very conservative. Comparatively, the corrosion 397

loss values determined by the ISO 9223 standard [15] closely align with the measured 398

values, falling between the 5% and 95% quantiles in four out of six instances. This shows 399

that this approach is not overly conservative and, on the other hand, not dangerously close 400

to the 95% quantile limit. Greatest value of quantile is 0.140, which mean, that 14.0 % of 401

the predicted values are smaller than in-situ measurement. On the other hand the smallest 402

quantile is 0.00516 (0.516 %), so it is little bit conservative, but still on acceptable level. 403

When comparing the in-situ measured values from site B1 with vertically oriented 404

corrosion coupons to the predicted values from the UN ECE ICP Effect on Materials 405

equation [16], a good agreement is observed at the 46.0% quantile. However, for sites B3 406

and B5, the in-situ measured values are situated near the 5% quantile. This shows that while 407

the distance to the emitter is relatively small, this strategy produces more accurate forecasts; 408

but, as the distance increases, the approach becomes more conservative. This points out 409

the influence of chloride, which is not directly or indirectly included in this method. The 410

authors do not consider this method unsafe for use even in close proximity to a chloride 411

emitter, in this case 7 m from the guide strip of the road. The predicted values are still at an 412

acceptable level of confidence. However, as the distance increases and therefore the effect 413

of chloride ions on corrosion loss decreases, this approach becomes more conservative. 414

On comparing the measured values from the Hrabyně, Josefovice locality with the 415

predicted values from the Multi-Assess project [17], it becomes evident that this method is 416

overly conservative for this particular locality. Even at site B1, which is closest to the road, 417

the quantile value remains below 5%. For sites B3 and B5, the quantile values are nearly 418

negligible. In all cases, the predicted corrosion loss values are higher than the measured 419

values, indicating that the Multi-Assess approach [17] tends to predict on the safe side. 420

If this approach is utilized, the predicted values may be excessively conservative. In all 421

mentioned cases of in-situ measurement, this approach is most conservative in comparation 422

with another two ones. 423

In contrast, using the equation from the ISO 9223 standard [15] allows for reliable 424

prediction of corrosion loss values without excessive conservatism. This demonstrates 425

the critical importance that taking into account the impact of chloride ion deposition (and 426

its prediction) plays in precisely estimating corrosion loss. The authors conclude that the 427

equation from the ISO 9223 standard [15] is well-suited for predicting corrosion loss in the 428

vicinity of roads. This is mainly because the ISO 9223 [15] approach includes the effect 429

of chloride ions, which is a major corrosive agent in the vicinity of roads. The effect of 430

chloride is mainly in the winter season, but neverthless its effect on steel structures in the 431

vicinity of roads is major. 432

The evaluation of these approaches consisted a comparison with experimental data 433

obtained from corrosion coupons at the Hrabyně, Josefovice locality in the year 2022. The 434

authors conducted long-term measurements at the locality and these measurements are 435

ongoing. 436

Additionally, linear regression predictions, along with each distribution prediction 437

and confidence interval, are extrapolated to the year 2030. With the increase in temperature, 438

the need for de-icing salt is reduced, as it can be predicted that there might be fewer 439

freezing days. This assumption cannot be confirmed yet due to the lack of long-term data 440

on measured chloride ion deposition rates. However, it can be indirectly supported by the 441

linear regression analysis of PM10 particles, which are also decreasing. Additionally, the 442
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decrease in relative humidity can reduce the duration of surface wetness, thereby reducing 443

the occurrence of corrosion reactions. Lastly, there is a decreasing concentration of SO2, 444

which is also a corrosion stimulant. Overall, the prediction of all environmental data 445

indicates a potential decreasing trend in corrosion rates in the future. 446

7. Conclusion 447

The study focuses on the crucial task of predicting corrosivity for designing steel 448

structures in corrosive environments. Utilizing probabilistic approaches enhances the accu- 449

racy of annual corrosion loss predictions compared to traditional deterministic methods. 450

Three applied prediction models demonstrate satisfactory results in locations less affected 451

by chloride ion deposition. However, in proximity to chloride ion emitters, the ISO 9223 452

standard is recommended for determining local corrosion aggressiveness, while caution is 453

advised against using the UN ECE ICP Effect on Materials equation for surfaces in very 454

close proximity to emitters due to long-term safety concerns. The Multi-Assess project 455

equation is considered conservative for the site under consideration. 456

The research introduces the concept of stochastic calculation and computational com- 457

plexity using the ProbCalc software. Techniques such as zone and interval optimization, 458

along with the use of groups for numerical optimization, are discussed to reduce computa- 459

tional time. The study involves comparing prediction models with experimental data from 460

installed corrosion coupons at a single site, with ongoing measurements at additional sites 461

to establish more general validity. The article also includes predictions extending to 2030, 462

indicating a potential decline in corrosion rates and a trend towards reduced corrosion in 463

the studied areas. The authors plan to continue monitoring various localities to validate 464

predictions and record corrosion loss and environmental aggressiveness. 465
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Appendix A 479

In the case of the ISO 9223 approach, this Delphi 7 script is used: 480

481

library ISO9223; 482

uses SysUtils,math,Classes; 483

function Fx ( NumModel : integer; P: array of double) : double; 484

- Logic function - 485

function poz (x:double):integer; begin if (x>0) 486

then poz := 1 else poz := 0 end; 487

function neg (x:double):integer; begin if (x<0) 488

then neg := 1 else neg := 0 end; 489

function nul (x:double):integer; begin if (x=0) 490

then nul := 1 else nul := 0 end; 491

var // Local variables 492
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fstISO: double; 493

begin 494

//fst 495

if P[2]<=10 then 496

begin 497

fstISO := 0.15*(P[2]-10); 498

end 499

else 500

begin 501

fstISO := -0.054*(P[2]-10); 502

end; 503

case NumModel of 504

- Model - 505

1: Fx := 1.77*power(P[0],0.52)* 506

exp(0.02*P[1]+fstISO)+0.102* 507

power(P[3],0.62)*exp(0.033*P[1]+ 508

0.04*P[2]); 509

end 510

end; 511

exports Fx; 512

begin 513

end. 514

515

In the case of the UN ECE ICP Effect on Materials approach, this Delphi 7 script is 516

used: 517

518

library UNECE; 519

uses SysUtils,math,Classes; 520

function Fx ( NumModel : integer; P: array of double) : double; 521

- Logic function - 522

function poz (x:double):integer; begin if (x>0) 523

then poz := 1 else poz := 0 end; 524

function neg (x:double):integer; begin if (x<0) 525

then neg := 1 else neg := 0 end; 526

function nul (x:double):integer; begin if (x=0) 527

then nul := 1 else nul := 0 end; 528

var // Local variables 529

fstUN: double; 530

begin 531

//fst 532

if P[2]<=10 then 533

begin 534

fstUN := 0.059*(P[2]-10); 535

end 536

else 537

begin 538

fstUN := -0.036*(P[2]-10); 539

end; 540

case NumModel of 541

- Model - 542

1: Fx := 3.4*power(P[0],0.13)* 543

exp(0.02*P[1]+fstUN)*power(P[3],0.33); 544

end 545

end; 546
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exports Fx; 547

begin 548

end. 549

550

In the case of the Multi-Assess approach, this Delphi 7 script is used: 551

552

library MultiAssessGrupa; 553

uses SysUtils,math,Classes; 554

function Fx ( NumModel : integer; P: array of double) : double; 555

- Logic function - 556

function poz (x:double):integer; begin if (x>0) 557

then poz := 1 else poz := 0 end; 558

function neg (x:double):integer; begin if (x<0) 559

then neg := 1 else neg := 0 end; 560

function nul (x:double):integer; begin if (x=0) 561

then nul := 1 else nul := 0 end; 562

var // Local variables 563

RH, fstMA: double; 564

begin 565

//fst 566

if P[2]<=10 then 567

begin 568

fstMA := 0.15*(P[2]-10); 569

end 570

else 571

begin 572

fstMA := -0.054*(P[2]-10); 573

end; 574

//Model Multi Assess - RH; 575

if P[1]<=60 then 576

begin 577

RH := 0; 578

end 579

else 580

begin 581

RH := P[1]; 582

end; 583

case NumModel of 584

- Model - 585

1: Fx := power(10,6)*(29.1+(21.7+P[0]+ 586

P[1])*power(P[2],0.6))/(7850*1000); 587

- Grups - 588

2: Fx := 1.39*power(P[0],0.6)*RH* 589

exp(fstMA); 590

3: Fx := 1.29*P[0]*power(10,-P[1])+ 591

0.593*P[2]; 592

end 593

end; 594

exports Fx; 595

begin 596

end. 597

598
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