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Abstract: The predicted corrosion losses is one of the most important factors in the proper design
of a steel structure’s service life. Corrosion coupon analysis will give a prediction of both short-
and long-term corrosion loss. In the event of short-term exposure, the most useful data are often
those that are available on an annual basis. Corrosion coupons must be exposed for an extended
period (such as 10 years or more), which is not always practical prior to the construction of the
building itself, particulary for long-term prediction of corrosion losses is needed. In steel buildings,
designers frequently depend on corrosion maps and corrosion loss prediction models. While ISO
9223 and ISO 9224 serve as widely used analytical prediction models, alternative methods are also
applicable. An additional option is to utilize an analytical model based on the UN/ECE ICP project
or the Multi-Assess project. Temperature, average relative humidity, average annual deposition of
chloride ions and sulfur dioxide, as well as the average annual concentration of dust particles, are just
a few examples of the input parameters for these models. These equations only consider the annual
average value; they do not consider inputs as random variables. The option of utilizing the input
values as the probability distribution of a random variable is discussed in this article. The authors
attempt to capture the variation of in-situ measurement values using the mentioned methods. These
numbers may not always accurately represent the predictions made by the models. The thickness
of the corrosion products after one year of exposure is then determined by processing the input
parameters using stochastic methods. The comparison with in-situ measurement data at sites located
near roadways is also included in the article.

Keywords: Corrosion loss; prediction; probability; DOProC; ISO 9223; UN ECE ICP; Multi-Asssess

1. Introduction

Civil engineering is specific due to the need for structures to be reliable and durable
over an extended period. According to EN 1990 [1], there is a requirement for 50 years
of service life for buildings and other common structures, and 100 years for monumental
building structures or bridges. Consequently, it is necessary to take care of the building
structure during its service life. A poor design can lead to significantly higher costs for
maintenance and repairs. There are a lot of structures exposed to environmental influence,
which include corrosion stimulants. However, corrosion stimulants are a dynamically
changing variables. In the last century, the primary cause of atmospheric corrosion was
sulfur dioxide in inland environment. Due to ecological pressure, sulfur dioxide now has
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a minor effect on corrosion rate [2]. In the context of increasing road traffic, there are local
microclimates in the vicinity of roads. The main influence on corrosion rate occurs in the
winter when deicing salt is used. Sodium chloride and brine are the main deicing agents
used to maintain road passability. Passing vehicles splash deiced snow and emit aerosol and
impurities. Chlorides have a significant influence on the service life of structures [3], [4], [5].

Corrosion processes on steel structures are accelerated by chlorides [6], [7], especially
in the vicinity of roads. These actions can influence both the serviceability limit state and
the ultimate limit state by reducing the cross-sectional area [8], [9]. Another significant
factor is the potential development of fatigue damage [10]. It is necessary to consider all
these phenomena in the design of steel structures, particularly in the case of weathering
steel constructions [11], [12]. After considering these factors, it becomes possible to design
the structure safely for its entire lifecycle.

Two main approaches are used for predicting corrosion loss and determining corro-
sion rates in the Czech Republic. The first approach is the corrosion map of the Czech
Republic [13]. These maps allow for a simplistic determination of corrosion loss. However,
it’s essential to note that these corrosion maps are based on prediction models referenced
in the following text. This approach is quite general and does not take into account local
environmental influences, which are often crucial for accurately determining the corrosion
aggressiveness of the local environment. Historically at the European region SO, has a
significant influence to corrosion, but since 2000-2010 is minor influence due to ecological
pressure, especially desulphurisation units in the industry [14] [3]. One of most significant
influence is the deposition of chloride ions in the vicinity of roads, which depends on
factors such as traffic density, the topography of the terrain near the road, and the structural
and dispositional design of bridge structures. Corrosion maps are used when other data are
absent to determine corrosion loss. In a local microclimate, such as the road surroundings,
it is not advisable to use only corrosion maps. However, corrosion maps do not consider
the influence of local microclimates.

Alternatively, there is another possibility for determining corrosion loss. If detailed
information on environmental influences is available, an approach based on adjusting
corrosion stimulants (e.g. chloride and sulphur dioxide), temperature, relative humidity
and other input parameters can be used. Predicted corrosion loss (or corrosion class) can be
used to determine corrosion allowances for weathering steel constructions. For structures
designed from carbon steel, corrosion loss or corrosion class determines the suitable coating
system. Therefore, it is crucial to study corrosivity in specific microclimates, like those near
roads, and develop prediction models for accurate corrosion loss prediction.

Currently, numerous approaches exist for predicting corrosion loss and determining
corrosion class. The aim of this article is to apply three prediction models:

e 1SO9223
e  UN ECE ICP Effect on Materials
e  Multi-Asses

The first approach considered is based on the ISO 9223 standard [15], which include
the corrosion-damage equation. This equation predicts corrosion loss after one year of
exposure, considering factors such as the annual deposition of chloride ions and sulfur
dioxide, annual relative humidity, and temperature.

The second equation considered is from the UN ECE ICP Effect on Materials project [16],
which takes into account the influence of sulfur dioxide, annual relative humidity, annual
temperature, and time.

The third equation was developed within the Multi-Assess project [17], and consider
account various environmental variables, including the influence of sulfur dioxide, pH of
rain, and annual rainfall. A comprehensive list of variables is provided in Chapter 2.

It's important to note that the ISO 9223 approach [15] is the only one that directly
considers the influence of chloride ions. The other two corrosion-damage equations do
not account for this influence directly. However, a derived relationship exists between the
amount of PMjg particles and the quantity of deposited chlorides, though it is not entirely
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accurate. It's worth mentioning that this does not involve the direct deposition of chloride
ions, as might occur in cases of winter road maintenance.

The mentioned input parameters are not constant but rather random variables. Mod-
ern probabilistic methods exist, allowing engineers to work with input and output datasets
as random variables [18], [19]. Input parameters can be analyzed through long-term mea-
surements, allowing for the determination of their development in time and the expression
of the distribution function. Simulation methods like DOProC, Monte-Carlo, or SBRA
typically use histograms, instead of parametric distributions, for greater generality and
robustness. This approach is also suitable for technical professionals who do not specialize
in probabilistic assessments but use them as a tool for realized analyses. The quality of the
relationship between raw data and the resulting histogram can be described, for example,
by distribution fitness called closeness, which ranges from 0 to 1 [20]. In general, a higher
closeness value indicates that the resulting histogram better represents the raw data.

There are various approaches for working with values in the form of random variables.
Historically, methods like the Monte Carlo approach [21] or the follow-up approach in
the SBRA probabilistic method have been utilized [22]. These approaches are still widely
utilized. However, for large-scale tasks, they have the drawback of requiring a large
number of simulations, resulting in extended computation times. This challenge can be
addressed in a lot of cases with the Direct Optimized Probabilistic Calculation (DOProC)
method [23]. Numerous optimization tools have been developed for the DOProC method,
which can significantly accelerate computation speed without significantly compromising
the quality of the outputs. Significantly, these tools open up the user environment to
ordinary engineers who may not have deep expertise in probabilistic methods.

Well-described and processed input data are essential for accurate prediction. This
article utilizes available environmental data pertinent to the Czech Republic, spanning the
longest feasible observation period, to capture long-term trends.

Monika Mart'dkova - Kubzov4 et al. made original study for the locality Kopisty [24].
In the mentioned study, only normal and lognormal distributions are used without any
distribution fitting analysis. In current research the improvement is in distribution fitting
of applied parameters. Moreover , the comparation of predicted values with data from
the vicinity of the road for horizontal and vertical surfaces for the year 2022 and statistical
analysis of likelihood of prediction accuracy of studied models is conducted. Moreover,
extrapolated prediction interval for each environmental input variables up to the year 2030
is provided in this article, in order to follow the predicted evolution of each input variable.
The discussion focuses on this prediction.

2. Approaches to determine corrosion loss

The aim of this article is the utilization of three approaches for the determination
of corrosion loss in steel constructions. In the following text, the consideration is given
to one-year exposure of corrosion coupons or the application of equations designed for
one-year exposure. Corrosion after one year is input for validating each of prediction
approaches. At the same time, this is one of the basic findings that can be used to determine
long-term corrosion rate (e.g. according to ISO 9224 [25]). Based on this knowledge it is
possible to determine the corrosion allowance for new structures or to predict the corrosion
damage of existing structures.

2.1. 15O 9223

First prediction model is from ISO 9223 standard [15]. The outcome of the prediction
equation represents the corrosion loss for carbon steel after one year of exposure. The ISO
9223 model can be applied to weathering steel, as the impact of a protective layer is not
substantial during the first year of exposure [26]. The ISO 9224 standard also mentions an
equation for long-term corrosion loss [25]. However, this concept of long-term corrosion
loss is not suitable for this article. Article only includes data from a one-year exposure
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of corrosion coupons. The protective effect of the patina only becomes apparent with
prolonged exposure of the surface to a corrosive environment [27].

Teorr = 1,77 x P9 x e002XRE+fit 40,102 x §%6% x 0033 RHH0,04xT 1)

where if T< 10°C:

fut = 0,150 x (T — 10), @)

else:

fot = —0,054 x (T —10), 3)

Tcorr - average annual corrosion loss (ym/year)

P; - average annual deposition rate of sulfur dioxide (mg/(m?xday))

S, - average annual deposition rate of chlorides (mg/(m?x day))

RH - average annual relative humidity (%)

T - average annual temperature (°C)

e - Euler’s number.

CHMI reports, except other environmental values, only the concentration of sulfur
dioxide (SO,), not the deposition rate. It is necessary to incorporate the deposition rate of
sulfur dioxide into the equation. In this case, it is possible to use the equation from ISO
9223 standard [15] for converting between the concentration and deposition rate of sulfur
dioxide.

P;=0,8 x P. 4)

where
P; - average annual deposition rate of sulfur dioxide (mg/(m?xday))
P, - average annual concentration of sulfur dioxide (mg/m?).

2.2. UN ECE ICP Effect on Materials

From the project called UN ECE ICP Effect on Materials [16], [28] was derived equation
for dataset from 1987 and 1995. This project continue to these days. This study of corrosion
attack includes an equation for determining corrosion loss on weathering steels:

In(Feorr) = 3,54 40,33 x In(t) + 0,13 x In(P.) + 0,02 x RH x fy ®)

from which it can be expressed:

Feorr = PU13 5 033 5 (002X RH > fii+3/54 ©)
where if T< 10°C:
fst = 0,059 x (T —10), @
else:
fst = —0,036 x (T —10), ®)

Tcorr - average annual corrosion loss (um/year)

P, - average annual concentration of sulfur dioxide (mg/m?)
RH - average annual relative humidity (%)

T - average annual temperature (°C)

t - exposition time (years)

e - Euler’s number.
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2.3. Multi-Assess

The Multi-Assess project investigated corrosion damage to materials at 50 sites across
Europe between 1970 and 2005 [17]. This research project spanned the years when the
concentration of SO, was gradually decreasing due to environmental pressures, primarily
on industrial production. It's worth noting that the reduction in sulfur dioxide (SOy)
concentration also affects the magnitude of corrosion loss on exposed surfaces [3].

The equation (9) contains more environmental variables than the previous two men-
tioned, but does not directly include the effect of chloride ion deposition. The influence is
included in the average annual concentration of PM;, which contain approximately 7 % of
chlorides for Czech republic [29]. The final equation is:

Feorr = 29,14 (21,7 41,39 x PY% x RHg x e/ +1,29 x RAIN x [HT] +0.593 x PMy) x t°, ©9)

where

10-PH

[Ht] = x M x 1000 (10)

and where if T< 10°C:

fut = 0,150 x (T — 10), (11)

else:

fut = —0,054 x (T — 10), (12)

Tcorr - average annual corrosion loss (ym/year)
P, - average annual concentration of sulfur dioxide (mg/m?)
RHgp - average annual relative humidity (%)
if RH < 60 %, then RHg=0, else RHgg = RH
RH - average annual relative humidity (%)
T - average annual temperature (°C)
RAIN - annual rainfall (mm)
[H '] - molar concentration of hydrogen in rainfall (mg/1)
pH - potential of hydrogen (-)
V - volume of rainfall (1)
M - water molar mass (g/mol)
PMyy - average annual concentration of particles smaller than 10 ym (mg/m3)
t - exposition time (years)
e - Euler’s number.

3. Inputs

Due to the challenge of directly measuring all input variables at all of the exposure
site, the nearest relevant CHMI station, which measure investigated environment variable,
is selected. The data from the CHMI databases [30], [31] originate from the listed stations,
the distance and position are depicted in the Figure 1:

. Opava, Katefinky
¢ Opava, Otice
e  Ostrava-Poruba/CHMI

The predicted data is extrapolated to the year 2030 for climate data. The resulting
distributions are determined using the HistAn software [32]. Prediction is made for the
year 2022 and comparsion with in-situ measured data is mentioned in Chapter 5.
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Figure 1. Overview map of the test site and distance to the CHMI stations (source: mapy.cz)

3.1. Average annual temperature

The average annual temperature data for the Opava, Otice site from 1961 to 2022 was

investigated [30], [31]. The Laplace distribution of average annual temperature is selected.

64 intervals of Laplace distribution is used. Closeness of the selected Laplace distribution is

0.43, Normal distribution has closeness 0.20. Therefore, Laplace distribution was selected.

Temperature has a significant influence on the corrosion rate. When the temperature is
above 0°C [33], the atmospheric corrosion started. However, when the temperature drops
below 0°C, the influence on the corrosion rate decreases because water can change its state
from liquid to solid - freezing. This temperature can be changed by using chlorides (NaCl
or brine) as a deicing salt to maintain roads. On the other hand, at high temperatures and
when the relative humidity is not close to 100 %, evaporation occurs, and water loses its
influence on the corrosion rate because surfaces dry out [34]. These factors are pertinent for
atmospheric corrosion.

The Czech republic is in the mild climate zone and average annual temperature is

between 6°C to 11°C. Average number of freezing days is historicaly about 40 days [35], [36].
The linear regresion analysis with prediction and confidence interval is in the Figure 2.

Prediction for the year 2022 is marked by the dotted line and the distribution is in the
Figure 3. Input parameters of the distribution are in the Table 1.

Confidence and prediction interval - average annual temperature - Laplace distribution I orediction interval
- confidence interval

14 - linear regression line
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10 ©
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Average annual temperature (°C)
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1995 2020

Year

2000 2005 2010 2015
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2030

Figure 2. Confidence and prediction interval - average annual temperature - Laplace distribution
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26/10/2023 , 7:39:37
Parametric distribution : Laplace F ( x| Mi=9.373 , b=0.70325 )
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Figure 3. Prediction of average annual temperature for the year 2022 - Laplace distribution

Table 1. Laplace distribution - average annual temperature (°C)

Intervals (-) | u(°C) | B(°C)
[ Temperature | 64 9,373 | 0,70325

3.2. Average annual relative humidity

The average annual relative humidity data for the Opava, Otice site from 1961 to 2022
was investigated [30], [31]. The Laplace distribution of average annual relative humidity
is selected. 64 intervals of Laplace distribution is used. Closeness of the selected Laplace
distribution is 0.44, Normal distribution has closeness 0.37. Therefore, Laplace distribution
was selected.

The average annual relative humidity is associated with the time of wetness on the
surface. If there is higher value of relative humidity, it is more likely that precipitation
happen. Water is one of important factors for progress of corrosion reaction [37]. For
example, in Multi-Assess approach if the average annual relative humidity is smaller than
60 % then influence of relative humidity is neglected [17].

The linear regresion analysis with prediction and confidence interval for RH is in the
Figure 4. Prediction for the year 2022 is marked by the dotted line and the distribution is in
the Figure 5. Input parameters of the distribution are in the Table 2.

Confidence and prediction interval - average annual relative humidity - Laplace distribution [JJJJl rediction interval

- confidence interval

100 - linear regression line
0 000 — +
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40
30
20
10

0

60 .
50 Prediction for 2022|

Average annual relative humidity (%)

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030
Year

Figure 4. Confidence and prediction interval - average annual relative humidity - Laplace distribution
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26/10/2023 , 7:35:43
Parametric distribution : Laplace F { x| Mi=73.9567 , b=3.39156 )

T T T T T T T T T

0,045 471 T T T T T T T T I

004 : ' : ; = : ' : :
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0,025 i
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0,015
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0,005'."-5"" —

05 e T T T T T T T T T
63,955 65,542 67,448 69,353 71,258 73,163 75,068 76,974 78,879 80,784 82,689
Value f(z)

Figure 5. Prediction of average annual relative humidity for the year 2022 - Laplace distribution

Table 2. Laplace distribution - average annual relative humidity (%)

Intervals (-) | u(%) B(%)
l RH | 64 73,957 | 3,39156

3.3. Annual rainfall

The annual rainfall data for the Opava, Otice site from 1961 to 2022 was investi-
gated [30], [31]. The Laplace distribution of annual rainfall is selected. 64 intervals of
Laplace distribution is used. Closeness of the selected Laplace distribution is 0.79, Normal
distribution has closeness 0.60. Therefore, Laplace distribution was selected.

Annual rainfall is very important for non-covered structures, as for example railway
truss bridges. For other covered construction parts, as steel-concrete coupled road bridges,
it is not so important as direct influence. If there is covered steel, without direct exposure,
there is still some influence by evaporation from the ground and this can localy increase
relative humidity and possibility to water precipitating on the surface [38]. Another next
important factor of annual rainfall is the frequency and intensity of rainfall [39].

The linear regresion analysis with prediction and confidence interval is in the Figure 6.
Prediction for the year 2022 is marked by the dotted line and the distribution is in the
Figure 7. Input parameters of the distribution are in the Table 3.

Confidence and prediction interval - sum of annual rainfall I prediction interval
- confidence interval
1200 - linear regression line
1000 ° Prediction for 2022
T :
E 800
z
£ 600
i
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3 400
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Figure 6. Confidence and prediction interval - annual rainfall - Laplace distribution
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26/10/2023 , 7:37:58

Parametric distribution : Laplace F (x| Mi=543.997 , b=86.75218 )
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0104_'? e ! I -

0,035 I | ! I .‘ ,

pf (2)

0,03 1 i i : - =
0,05 4 { I | - |— 1 L

0,02 41

Probability
1
|

0,015 4
0,01 1

T

0,005 1

o LT

T T T 1 T 1 1 1
288,15 328,76 377,49 426,23 474,96 523,69 572,42 621,16 669,89 718,62 767,36
Value f(z)

Figure 7. Prediction of annual rainfall for the year 2022 - Laplace distribution

Table 3. Laplace distribution - annual rainfall (mm)

Intervals (-) | u(mm) | B(mm)
l Rainfall | 64 543,997 | 86,75218

3.4. Average annual concentration of SO,

The average annual concetration of SO, data for the Ostrava-Poruba/CHMI site from
1961 to 2022 was investigated [30], [31]. The Rayleigh distribution of average annual
concentration of SO, is selected. 64 intervals of Rayleigh distribution is used. Closeness of
selected Rayleigh distribution is 0.80, Normal distribution is not mentioned in results from
HistAn software. Therefore, Rayleigh distribution was selected.

There was a significant influence of SO, on corrosion rate in the 20th century in the
Czech republic, especially in 1970s and 1980s [40], [41]. Because of the poor air quality,
there was pressure to improve the air quality and the main air polluters (coal power
stations, heavy industry etc.) were forced to implement desulphurisation units. The
concentration of sulphur dioxide was decreased and approximately from year 2000 is
slightly decreasing [3], [24], [42]. For this article was used data from 2011, because in
this year was started measuring concentration of sulphur dioxide by station Ostrava-
Poruba/CHMI [30].

In the case of SO; only values after a significant decrease due to the installation of
desulphurisation units in heavy industry since 2000 are considered. This information is
only valid for newly constructed structures. However, in the case of older structures, it is
very important to take into account the entire time history of the SO, concentration and to
consider the effect of the increased sulphur dioxide concentration on the structure.

The linear regresion analysis with prediction and confidence interval is in the Figure 8.
Prediction for the year 2022 is marked by the dotted line and the distribution is in the
Figure 9. Input parameter of the distribution is in the Table 4.
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Figure 8. Confidence and prediction interval - average annual concentration of SO, - Rayleigh

distribution
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Figure 9. Prediction of average annual concentration of SO, for the year 2022 - Rayleigh distribution

Table 4. Rayleigh distribution - average annual concentration of SO, (mg/m?)

Intervals (-) | o(mg/m>)
[50, | 6 4,551

3.5. Average annual concentration of P Mg

The average annual concetration of PM;, data for the Opava, Katefinky site from
1961 to 2022 was investigated [30], [31]. The Rayleigh distribution of average annual
concentration of PM is selected. 64 intervals of Rayleigh distribution is used. Closeness
of selected Rayleigh distribution is 0.89, Normal distribution is not mentioned in results
from HistAn software. Therefore, Rayleigh distribution was selected.

There is a relationship between PM;jy and chloride ions [43] [44]. This relationship
varies across different environmental situations. In the Czech Republic, studies conducted
to create corrosion maps have found that PM;, particles contain approximately 7 % chloride
ions [29]. This information is crucial because in the Multi-Assess [17] approach, the direct
influence of chloride ions is not considered as part of the prediction model. Instead, it
indirectly affects the equation through the presence of PM;jg particles.

The linear regresion analysis with prediction and confidence interval is in the Figure 10.

Prediction for the year 2022 is marked by the dotted line and the distribution is in the
Figure 11. Input parameter of the distribution is in the Table 5.
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Figure 10. Confidence and prediction interval - average annual concentration of PM;, - Rayleigh
distribution

26/10/2023 , 7:32:18
Parametric distribution : Rayleigh F ( x| Sigma=19.960 )
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Figure 11. Prediction of average annual concentration of PMj for the year 2022 - Rayleigh distribu-
tion

Table 5. Rayleigh distribution - average annual concentration of PMjg (mg/m?)

Intervals (-) | o (mg/m3)
[PM;, | 64 19,960

3.6. Average annual deposition of Cl~

A constant deposition rate of chloride ions for 2022 was determined through linear
regression analysis based on the authors’ in-situ measurements from 2019 to 2022 [2], [40],
[45], [46] in the Hrabyné, Josefovice locality. It is a long term measurement of deposition of
chloride ions. Chloride deposition analysis is carried out for each month of the year. The
values given are a weighted average for each year. There are five measurement sites, but
corrosion coupons are placed only on three of them (B1, B3 and B5). For this reason only
data from wet candle measurement for mentioned sites are used. Test sites are depicted in
the Figure 12.
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LEGEND:

site
distance from the road

Figure 12. Overview map of the test sites in the Hrabyné, Josefovice locality (source: mapy.cz)

The linear regresion analysis with prediction and confidence interval is in the Fig-
ures 13, 14 and 15. Prediction for the year 2022 is marked in each Figure. There is still a lack
of long-term measurements to define the input of chloride ion deposition rates as a specific
type of distribution. For the prediction of corrosion losses are used predicted values of
deposition of chloride ions, due to consideration of the chloride ion deposition trend. The
prediction and confidence interval is determined assuming a normal distribution.
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Figure 13. Confidence and prediction interval - B1 site

Confidence and prediction interval - average annual deposition of chloride ions [JJJM erediction interval
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Figure 14. Confidence and prediction interval - B3 site
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Figure 15. Confidence and prediction interval - B5 site

Table 6. Predicted deposition rate of chloride ions (mg/(m?xday))

Test site | Value (mg/(m?>*day))
B1 13.05

B3 6.55

B5 3.80

3.7. Rainfall pH

The rainfall pH distribution is in the Figure 16 and its parameters in the Table 7.

Parameters are used from available literature [47], [48], [45].

31/10/2023 , 17:02:29
Parametric distribution : Normal F { x| Mi=5.82, Sigma=0.63 )
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Figure 16. Confidence and prediction interval - Rainfall pH - Normal distribution

Table 7. Normal distribution - rainfall pH (-)

Intervals (-) | p(-) | o(-)
l pH | 64 5,82 0,63

4. Application of Direct Optimized Probabilistic Calculation (DOProC)

Since input data is represented as functions of random variables, probabilistic methods
are necessary to express the results. In this case, the Monte Carlo method or its application
in the SBRA method [22] can be used. However, due to the complexity of the problems
to be solved, especially in the Multi-Assess method, this approach can be computation-
ally demanding, particularly for very low probability events. To address this, the Direct
Optimized Probabilistic Calculation (DOProC) [49] and ProbCalc software [50] are used.
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Due to the presence of conditional functions in all the approaches mentioned in this
paper, stochastic analysis requires the use of Delphi 7 scripts [51]. Scripts are compiled
into .dll libraries and utilized within the Probcalc software [50]. An additional benefit of
using .dll libraries is the acceleration of the calculations. The full text of the scripts is in
Appendix A.

In the case of the ISO 9223 and UN ECE ICP Effect on Materials approaches, optimiza-
tion is not necessary because the computing time takes only a few seconds. However, the
situation is different for the Multi-Assess approach, where the computing time is significant
due to a large number of combinations. The number of combinations is much larger than
in the ISO 9223 or UN ECE ICP Effect on Materials approaches. In this case, it is advisable
to utilize zonal and interval optimization of input parameters [20], [49].

The result of these optimizations is a reduction in the intervals of individual his-
tograms, thereby reducing the number of combinations and the complexity of the task.
However, these optimizations did not have a significant impact given the number of vari-
ables used. The estimated computation time before and after optimization was on the order
of days.

A substantial reduction in computation time was achieved through a technique called
grouping [20], where a portion of the original combinations is isolated and computed
separately. The results from these groups are then used for the subsequent calculations
while maintaining sufficient accuracy. In the case of the Multi-Assess-based approach, two
groups were used, represented by equations 13 and 14. Subsequently, the entire problem
was computed using the results from these groups by solving equation 15. This reduced
the computation time to mere seconds.

groupl = 1,39 x P%® « RHg * efst (13)
group2 = 1,29 x RAIN x [H"] 4 0.593 x PMy, (14)
Feorr = 29,1+ (21,7 + groupl + group?) %, (15)

The resulting values of all three analysed models are shown in the Table 8 and distribu-
tion of the predicted values for each approach from the Figure 17 to the Figure 21. There are
mentioned 5% quantile, 95% quantile, mode and median for the relevant approach in each
picture. There is predicted values with 64 intervals for each approach. For the subsequent
analysis, the value of the 95% quantile is important because this value expresses the 95%
probability that the predicted value is smaller than the magnitude of the value and only
5 % of the values will be teoretically greater.

Table 8. Predicted corrosion loss value for 2022 by DOProC method and by mean value (ym/year)

I1SO 9223 (ym/year) UN ECE Multi
Icp Assess

Bl B3 BS (ym/year) | (um/year)
min 7.39 5.37 4.30 8.50 8.40
max 53.87 | 49.37 | 47.15 26.37 94.14
median 25.68 | 22.68 | 21.16 18.48 42.43
mode 2491 | 22.68 | 21.16 18.89 41.07
5% quantile 16.69 | 1393 | 12.48 15.06 23.81
95% quantile 36.22 | 3293 | 31.30 22.03 63.86

[ prediction by meanvalue [ 2222 [ 1931 [ 1774 | 1751 [ 3757 |

From the Figure 17 to the Figure 21 are also marked in-situ measurement values. See
Chapter 5 for a more detailed description of the markings.
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Figure 17. Distribution of the predicted corrosion loss values for the ISO 9223 approach and the Bl
site for the year 2022 (ym/year)
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Figure 18. Distribution of the predicted corrosion loss values for the ISO 9223 approach and the B3
site for the year 2022 (ym/year)
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Figure 19. Distribution of the predicted corrosion loss values for the ISO 9223 approach and the B5
site for the year 2022 (ym/year)
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Figure 20. Distribution of the predicted corrosion loss values for the UN ECE ICP Effect on Materials
approach for the year 2022 (ym/year)
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Figure 21. Distribution of the predicted corrosion loss values for the Multi-Assess approach for the

year 2022 (ym/year)

5. Results of in-situ corrosion loss - site Hrabyné, Josefovice

The site Hrabyné, Josefovice and year 2022 were selected for the analysis of the
suitability of the chosen approaches for corrosion loss prediction. The positions of each test
sites are depicted in Figure 12. Values of chloride ion deposition and corrosion loss on both
horizontal and vertical corrosion coupons have been monitored over an extended period
near the I/11 road in the vicinity of Hrabyné, Josefovice. The orientation of the corrosion
coupons (H - horizontal, V - vertical) corresponds to the orientation of the major groups of
exposed real steel construction parts of bridges. The results of in-situ measurements and
statistical comparisons with output data from DOProC are presented in Table 9. Values

in the column ISO 9223, UN ECE ICP and Multi-Assess are fractiles from each approach.

There are also shown each in-situ measurement in relevant Figures from 17 to 21.
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Table 9. Measured corrosion loss values after one year exposure on exposed corrosion coupons - site
Hrabyné, Josefovice - year 2022

UN Multi
Loc./ Tcorr 1SO 9223 | ECE Assess
Or. Icp
(g/(mZ% *xyear)) | (um/year) | (fractile) | (fractile) (fractile)

Bl | H | 141,47 18.0 0.0823 0,385 0.0113

V | 144,33 184 0.0941 0.460 0.0127
B3 | H | 112,45 14.3 0.0579 0.0242 0.00255

V | 77,65 9.9 0.00516 0.0000584 | 0.0000728
B5 | H | 121,15 15.4 0.140 0.0672 0.00435

VvV | 91,32 11.6 0.0336 0.00119 0.000602

Note: Values in the columns ISO 9223, UN ECE ICP and Multi-Assess are fractiles s

related to measured corrosion loss from respective predicted statistical distribution. 350
6. Discussion 351
6.1. Probabilistic calculation 352

For predictive models with only a few input variables and distribution featuring a s
limited number of intervals, the advantages of the DOProC method are not significantly s
apparent. Models like the one from the ISO 9223 standard [15] and the approach from the s
UN ECE ICP Effect on Materials [16], which fall into this category, can be solved in a matter sz
of seconds using today’s mainstream computing power. Further optimization steps are s
unnecessary for computational efficiency. 358

However, a different situation arises in predictive models with numerous variables  ss
or distribution featuring many intervals. In this article, it is examine the Multi-Assess e
approach [17], which involves seven variables. One of these variables is time, which re- s
mains constant at one year. The remaining six variables have 64 intervals each, resulting in  ze
significantly longer computational times, estimated to be on the order of days. Zone and e
interval optimization can certainly reduce the computational complexity of the problem, se
bringing the estimated computation time down to aproximately one day. To achieve a s
substantial acceleration in the calculation, the use of grouping is advisable, as it can signifi- se
cantly reduce computational complexity. After employing both grouping and optimization, se
the computation time for the Multi-Assess approach [17] becomes comparable to that of  se
the ISO 9223 [15] or UN ECE ICP Effect on Materials [16] approaches. 360

Additionally, to reduce computational time, the usage of a .dll script is implemented, s
which is more efficient for the processor compared to running ProbCalc without the .dll s
script. 372

6.2. Comparison of prediction models with in-situ measurements a3

From the Table 8 and equation (5), (6) and (9), it is evident that only the equation from 7
the ISO 9223 standard [15] takes directly into account the influence of annual deposition s
of chloride ions. The other two equations do not consider this influence, preventing the 7
consideration of the trend of decreasing chloride ion deposition with increasing distance s
from the road [40]. Additionally, the Multi-Assess approach incorporates the influence of sz
PM;, particles, which contain about 7 % chloride ions in the Czech Republic area [29]. 379

Notably, the ISO 9223 approach [15] shows the smallest minimum values, while the s
equation from UN ECE ICP Effect on Materials [16] exhibits the highest values across all = s
basic characteristic limits. The variance of the maximum and minimum values in the UN sz
ECE ICP Effect on Materials [16] is smaller than for the other two approaches. This means s
that the UN ECE ICP Effect on Materials [16], if used as a probabilistic prediction approach, se
can quickly become non-safe for the prediction of corrosion loss after one year exposure  sss
and is directly related to the corrosion class. If the predicted value of the 95% quantile is  ze
smaller than real corrosion loss value, it is dangerous situation. It is necessary to say, itis e
not in this case, but the authors feel it is important to point this out. 388
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The established quantiles demonstrate that the in-situ measurements from 2022 fall  ss
safely below the 95% quantile values established by all considered approaches. On site B1, 190
the measured value is closest to the predicted 95% quantile value from the UN ECE ICP 3o
Effect on Materials [16]. However, a different situation arises at sites B3 and B5, where the
fractile values are relatively low. It is because this approach does not consider the effect of s
chlorides directly or indirectly. Predicted values are constant for all mentioned sites without 30
difference of distance from the road, as same as in the Multi-Assess approach. In the case 30
of predictions from Multi-Assess [17], all quantile values are notably small, with none 39
exceeding 5%. This mean that approach is very conservative. Comparatively, the corrosion s
loss values determined by the ISO 9223 standard [15] closely align with the measured s
values, falling between the 5% and 95% quantiles in four out of six instances. This shows s
that this approach is not overly conservative and, on the other hand, not dangerously close 40
to the 95% quantile limit. Greatest value of quantile is 0.140, which mean, that 14.0 % of 4
the predicted values are smaller than in-situ measurement. On the other hand the smallest 0
quantile is 0.00516 (0.516 %), so it is little bit conservative, but still on acceptable level. 403

When comparing the in-situ measured values from site Bl with vertically oriented 4
corrosion coupons to the predicted values from the UN ECE ICP Effect on Materials 405
equation [16], a good agreement is observed at the 46.0% quantile. However, for sites B3 s
and B5, the in-situ measured values are situated near the 5% quantile. This shows that while 47
the distance to the emitter is relatively small, this strategy produces more accurate forecasts; a0
but, as the distance increases, the approach becomes more conservative. This points out 0
the influence of chloride, which is not directly or indirectly included in this method. The 4o
authors do not consider this method unsafe for use even in close proximity to a chloride
emitter, in this case 7 m from the guide strip of the road. The predicted values are stillatan a2
acceptable level of confidence. However, as the distance increases and therefore the effect 43
of chloride ions on corrosion loss decreases, this approach becomes more conservative. a4

On comparing the measured values from the Hrabyné, Josefovice locality with the s
predicted values from the Multi-Assess project [17], it becomes evident that this method is 4
overly conservative for this particular locality. Even at site B1, which is closest to the road, 7
the quantile value remains below 5%. For sites B3 and B5, the quantile values are nearly s
negligible. In all cases, the predicted corrosion loss values are higher than the measured s
values, indicating that the Multi-Assess approach [17] tends to predict on the safe side. o
If this approach is utilized, the predicted values may be excessively conservative. In all s
mentioned cases of in-situ measurement, this approach is most conservative in comparation
with another two ones. 423

In contrast, using the equation from the ISO 9223 standard [15] allows for reliable s
prediction of corrosion loss values without excessive conservatism. This demonstrates s
the critical importance that taking into account the impact of chloride ion deposition (and 4
its prediction) plays in precisely estimating corrosion loss. The authors conclude that the
equation from the ISO 9223 standard [15] is well-suited for predicting corrosion loss in the 2
vicinity of roads. This is mainly because the ISO 9223 [15] approach includes the effect s
of chloride ions, which is a major corrosive agent in the vicinity of roads. The effect of 4w
chloride is mainly in the winter season, but neverthless its effect on steel structures in the
vicinity of roads is major. 432

The evaluation of these approaches consisted a comparison with experimental data s
obtained from corrosion coupons at the Hrabyné, Josefovice locality in the year 2022. The 4
authors conducted long-term measurements at the locality and these measurements are 43
ongoing. 436

Additionally, linear regression predictions, along with each distribution prediction
and confidence interval, are extrapolated to the year 2030. With the increase in temperature, 43
the need for de-icing salt is reduced, as it can be predicted that there might be fewer 4
freezing days. This assumption cannot be confirmed yet due to the lack of long-term data o
on measured chloride ion deposition rates. However, it can be indirectly supported by the s
linear regression analysis of PMj, particles, which are also decreasing. Additionally, the s
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decrease in relative humidity can reduce the duration of surface wetness, thereby reducing
the occurrence of corrosion reactions. Lastly, there is a decreasing concentration of SO,,
which is also a corrosion stimulant. Overall, the prediction of all environmental data
indicates a potential decreasing trend in corrosion rates in the future.

7. Conclusion

The study focuses on the crucial task of predicting corrosivity for designing steel
structures in corrosive environments. Utilizing probabilistic approaches enhances the accu-
racy of annual corrosion loss predictions compared to traditional deterministic methods.
Three applied prediction models demonstrate satisfactory results in locations less affected
by chloride ion deposition. However, in proximity to chloride ion emitters, the ISO 9223
standard is recommended for determining local corrosion aggressiveness, while caution is
advised against using the UN ECE ICP Effect on Materials equation for surfaces in very
close proximity to emitters due to long-term safety concerns. The Multi-Assess project
equation is considered conservative for the site under consideration.

The research introduces the concept of stochastic calculation and computational com-
plexity using the ProbCalc software. Techniques such as zone and interval optimization,
along with the use of groups for numerical optimization, are discussed to reduce computa-
tional time. The study involves comparing prediction models with experimental data from
installed corrosion coupons at a single site, with ongoing measurements at additional sites
to establish more general validity. The article also includes predictions extending to 2030,
indicating a potential decline in corrosion rates and a trend towards reduced corrosion in
the studied areas. The authors plan to continue monitoring various localities to validate
predictions and record corrosion loss and environmental aggressiveness.
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Appendix A
In the case of the ISO 9223 approach, this Delphi 7 script is used:

library IS09223;

uses SysUtils,math,Classes;

function Fx ( NumModel : integer; P: array of double) : double;
- Logic function -

function poz (x:double):integer; begin if (x>0)
then poz := 1 else poz := 0 end;

function neg (x:double):integer; begin if (x<0)
then neg := 1 else neg := 0 end;

function nul (x:double):integer; begin if (x=0)
then nul := 1 else nul := 0 end;

var // Local variables
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fstISO: double; 403
begin 494
//fst 495
if P[2]<=10 then 496
begin 497
fstISO := 0.15%x(P[2]-10); 498
end 499
else 500
begin 501
fstISO := -0.054*%(P[2]-10); 502
end; 503
case NumModel of 504
- Model - 505
1: Fx := 1.77*power(P[0],0.52)%* 506
exp(0.02*P[1]+fstIS0)+0.102%* 507
power (P[3],0.62)*exp(0.033%P[1]+ 508
0.04xP[2]); 509
end 510
end; 511
exports Fx; 512
begin 513
end. 514

515

In the case of the UN ECE ICP Effect on Materials approach, this Delphi 7 script is s

used: 517

518
library UNECE; 519
uses SysUtils,math,Classes; 520
function Fx ( NumModel : integer; P: array of double) : double; 521
- Logic function - 522
function poz (x:double):integer; begin if (x>0) 523
then poz := 1 else poz := 0 end; 524
function neg (x:double):integer; begin if (x<0) 525
then neg := 1 else neg := 0 end; 526
function nul (x:double):integer; begin if (x=0) 527
then nul := 1 else nul := 0 end; 528
var // Local variables 529
fstUN: double; 530
begin 531
//fst 532
if P[2]<=10 then 533
begin 534
fstUN := 0.059%(P[2]-10); 535
end 536
else 537
begin 538
fstUN := -0.036%(P[2]-10); 530
end; 540
case NumModel of 541
- Model - 542
1: Fx := 3.4*power(P[0],0.13)* 543
exp(0.02*P [1]+fstUN) *power (P[3],0.33) ; 544
end 545

end 5 546
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exports Fx;
begin
end.

In the case of the Multi-

Assess approach, this Delphi 7 script is used:

library MultiAssessGrupa;
uses SysUtils,math,Classes;

function Fx ( NumModel

- Logic function -
function poz (x:double):
then poz := 1 else poz
function neg (x:double):
then neg := 1 else neg :
function nul (x:double):
then nul := 1 else nul
var // Local variables
RH, fstMA: double;
begin

//fst

if P[2]<=10 then
begin
fstMA :
end

0.15%(P[2]-10);

else
begin
fstMA
end;

integer; P: array of double) : double;

integer; begin if (x>0)

:= 0 end;

integer; begin if (x<0)
0 end;
integer; begin if (x=0)

:= 0 end;

-0.054%(P[2]-10);

//Model Multi Assess - RH;

if P[1]<=60 then
begin

RH := 0;

end

else

begin

RH := P[1];

end;

case NumModel of
- Model -

1: Fx := power(10,6)*(29.1+(21.7+P[0]+
P[1])*power (P[2],0.6))/(7850%1000) ;

- Grups -

2: Fx := 1.39%power(P[0],0.6)*RH*

exp (fstMA) ;

3: Fx := 1.29%P[0]*power(10,-P[1])+

0.593xP[2];
end

end;
exports Fx;
begin

end.
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